
1. Introduction
Droplets, aerosols, and ice particles, collectively a subset of atmospheric microphysical particles, affect 
planetary-scale climate, yet the processes that govern their behavior occur at the microscale. This extreme range 
of scales, from droplets to clouds to large-scale atmospheric dynamics, makes it challenging to computationally 
represent microphysics in atmosphere simulations. There are simply too many particles to represent directly, yet 
the microphysics processes involved are highly nonlinear and do not lend themselves easily to simplifications. 
Instead, microphysics schemes in climate and numerical weather models predict the particle size distribution 
(PSD) present at various locations in the atmosphere: the PSD and number concentration determine the macro-
scopic behavior of the system, such as cloud albedo or precipitation rates. Historically, methods to represent the 
PSD developed along two trajectories: bulk methods, which predict aggregate properties of the droplet population, 
and spectral methods, which explicitly track the PSD. Both of these representations make assumptions about the 
droplet distribution and the microphysical process rates, with spectral methods being the more flexible of the  two 
options. Unfortunately, these parameterizations and assumptions contribute a major yet difficult-to-quantify 
source of uncertainty in climate predictions (Arakawa, 2004; Intergovernmental Panel on Climate Change, 2014; 
Khain et al., 2015; Morrison et al., 2020; Randall et al., 2003).

Bulk schemes, originating with Kessler  (1969), explicitly track one or more prognostic moments of the PSD 
and therefore are very compact representations suitable for global climate applications. However, by abstract-
ing a droplet population to one, two, or three variables, bulk methods make two fundamental simplifications. 
First, many single-droplet processes such as sedimentation or aerosol activation require additional parameteriza-
tions or assumptions to approximate how the processes impact the prognostic moments. Second, because many 
such process rates depend on higher-order moments which are not explicitly tracked, moment-based methods 
require a closure to relate these higher order moments back to the prognostic variables. Frequently this closure 
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is accomplished by relating the prognostic moments back to an underlying assumed size distribution such as a 
gamma or exponential (e.g., Milbrandt & Yau, 2005; Morrison & Grabowski, 2008; Seifert & Beheng, 2006), 
which corresponds well to data in many empirical settings. However, in the case of a multimodal distribution, (for 
instance, when both small cloud droplets and larger rain droplets are present) this closure assumption introduces 
significant structural uncertainty into the microphysics scheme. There is no physical reason a priori to restrict a 
droplet population to maintaining a particular size distribution as they coalesce, break up, grow, sediment, and 
change phases. Unfortunately, inverting a multimodal distribution analytically is frequently ill-posed (Morrison 
et al., 2019). Most traditional bulk methods avoid the issue by representing several categories of hydrometeors 
(rain, cloud droplets, and several categories of aerosols) through separate prognostic moments, assuming a simple 
unimodal distribution for each of these categories. However, these categories of condensed water, while intuitive, 
are artificial: in reality, liquid hydrometeors are distributed across a continuous spectrum, from small chemically 
active aerosol particles, to large liquid cloud droplets, to droplets which are large enough to fall as rain. Conver-
sion between these categories adds further complexity and uncertainty to the model.

On the other hand, spectral or “bin” microphysics schemes directly evolve the PSD in time through discrete 
bins, or particle size ranges (e.g., Berry, 1967; Berry & Reinhardt, 1974; Tzivion et al., 1987; Young, 1974). 
Bin methods have made a great impact in understanding aerosol-cloud interactions (e.g., Fan et al., 2016; Khain 
et al., 2015; Morrison & Grabowski, 2007), but at a higher computational cost that currently makes them infea-
sible for climate simulations. For example, Gettelman et al. (2021) ran a general circulation model (GCM) with 
bin microphysics, incurring a factor of five cost penalty over a bulk scheme. Furthermore, while bin methods 
avoid the closure assumptions of bulk schemes, they suffer from similar parameterization challenges, numerical 
diffusion (Morrison et al., 2019), as well as from sensitivity to the bin discretization (Ghan et al., 2011). The 
purpose of the method presented here is to target the middle ground of complexity between traditional bulk and 
bin methods using more sophisticated numerical techniques.

To meet the needs of future climate and weather models, a microphysics scheme should maintain enough flexibil-
ity to function with a wide range of degrees of freedom and minimal structural uncertainty in the PSD representa-
tion. While bin-scheme complexity may be unattainable for GCMs in the near future, we still need a microphysics 
method that can maintain spectral details without the closure assumptions and conversion parameterizations 
required by moment-based bulk methods. Some recent efforts in microphysics modeling have focused on relaxing 
assumptions about the size distribution and process rates to reduce these structural uncertainties. One option, 
Lagrangian microphysics, directly tracks tracer particles known as superdroplets (Andrejczuk et al., 2008, 2010; 
Riechelmann et  al.,  2012; Shima et  al.,  2009), but it is far too computationally expensive for global or even 
regional models. A different moment-based method, the BOSS scheme proposed by Morrison et  al.  (2019) 
leaves all process rates and closures as generalized power series whose parameters are learned from data. Bieli 
et al. (2022) present a more efficient way to learn these parameters within a similar bulk microphysics framework 
that still relies on closures. More complex yet, Rodríguez Genó and Alfonso (2022) tackle the challenge of invert-
ing multimodal distribution closures using a machine-learning based method, which could avoid the necessity for 
cloud-rain conversion rate parameterizations. Another novel approach of combining bulk and bin microphysics 
to generate arbitrary moments for potentially multimodal distributions (Igel, 2019) illustrates the need to relax 
finite-size threshold assumptions for cloud-to-rain conversion (Igel et al., 2022). However, these bulk methods 
cannot function in a wide range of computational degrees of freedom, nor do they provide complete spectral 
details about the PSD that might alleviate uncertainties about conversion between hydrometeor types. One solu-
tion is to think beyond the classical bulk versus bin representations of the PSD, leveraging numerical techniques 
developed for fluid mechanics.

In this study, we present and test a novel way to span the gap in complexity between bin and bulk microphysics 
methods by applying the collocation method with basis functions (BFs) to represent the particle size distri-
bution. (For simplicity, it will be referred to going forward as the BF method.) Finite element methods such 
as collocation have been historically overlooked for microphysics applications, with the exception of Gelbard 
and Seinfeld  (1978)'s demonstration using collocation of quartic or cubic polynomials, which was never 
widely  adopted in favor of contemporaneous bin methods. More recent results from the applied math community 
suggest that combining collocation with radial basis functions, rather than polynomials, is a promising numer-
ical technique for advection problems (Franke & Schaback, 1998; Zhang et al., 2000). This work extends the 
basis function collocation technique to the integro-differential equations encountered in microphysics. Beyond 
retaining spectral details of the PSD, the BF method has appealing extremes of complexity: when using few basis 
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functions, the method is effectively a linear closure, as in the context of bulk schemes; at moderate or high resolu-
tions, it converges toward a smoothed bin scheme (replicating a bin scheme exactly if constant piecewise BFs and 
appropriate numerics are used). Therefore collocation of basis functions promises greater flexibility than either 
bulk or bin methods alone, while retaining desirable aspects such as low-to-moderate complexity and spectral 
predictions. This paper describes the method and presents results of applying the method to droplet collision 
and coalescence, benchmarked against commonly used bulk, bin, and Lagrangian frameworks. We additionally 
address some limitations posed by the method that are specific to the context of tracking a PSD, such as mass 
non-conservation and a finite size range. Overall, the BF method improves spectral PSD predictions in a box 
model as well as simple precipitation predictions, measured as a size exceedance, compared to a three-moment 
bulk method, and with fewer degrees of freedom than a bin method. Furthermore, the run-time complexity of the 
method scales quadratically with the number of degrees of freedom, making it just as efficient as a bin method.

The remainder of this paper is organized as follows: Section  2 describes the method of collocation of basis 
functions to approximately solve the population balance equation for collision-coalescence in microphysics, and 
Section 3 describes a set of microphysics box model case studies. Section 4 compares the accuracy of these case 
studies solved using basis functions, bulk, and bin methods against a high-fidelity Lagrangian reference solu-
tion, and discusses the computational complexity of these methods. Finally, Section 5 concludes the paper and 
suggests potential improvements and applications.

2. Method Description
2.1. Key Equations

The governing equations for microphysics describe a population balance for the droplet size distribution. The 
governing equation for collision-coalescence, also called the Smoluchowski or Stochastic Collection Equation 
(SCE), is given by

���(�, �) = 1
2 ∫

�

0
�(� − �, �)�(�, �)�(� − �, �)��(� − �, �)��

−�(�)∫

∞

0
�(�, �)�(�, �)��(�, �)��,

 (1)

where n(x, t) represents the number density of particles of mass x at time t, K(x, y) is the collision rate of particles 
of masses x and y, and Ec(x, y) is the coalescence efficiency of said collision. The first integral represents produc-
tion of droplets of size x from two smaller droplets, and the second integral represents loss of droplets of size x 
due to coalescence with other droplets.

Other microphysical processes such as condensation, evaporation, sedimentation, and aerosol activation also 
affect the PSD. To demonstrate the proposed BF method for microphysics, we initially focus on only the coales-
cence process as in Equation 1. The SCE is notoriously difficult to solve numerically, as it is an integro-partial 
differential equation and frequently involves rapid acceleration of particle growth, yet this mechanism is crucial to 
determining the onset of rain and drizzle (Stephens et al., 2010). Later, we will also consider two non-collisional 
processes of sedimentation and injection of new particles. For the purposes of this study, sedimentation is defined 
as removal of all particles above a size threshold xmax, which can prevent unphysically rapid acceleration of colli-
sions. Sedimentation is enforced by limiting the upper bound of each integral to xmax, effectively truncating the 
PSD to have a value of n(x > xmax, t) = 0. We can alternatively prevent particles larger than the maximum size 
xmax from forming by rejecting those collisions in a mass conserving manner. The appropriate upper bound for 
the second integral in this case is xmax − x (Filbet & Laurençot, 2004). When such collisions are not rejected and 
particles exit the system, we introduce new droplets to the system to mimic the entrainment or activation of new 
small particles. The rate of particle injection Pinj(x, t) is given by

𝑃𝑃inj(𝑥𝑥𝑥 𝑥𝑥) = �̇�𝑃 𝑃𝑃(𝑥𝑥) (2)

where I(x) represents a normalized size distribution of the injected droplets, which might be smaller than the aver-
age droplet in the system, and 𝐴𝐴 �̇�𝑃  is the rate of particle injection. This combination of droplet dynamics represents 
a system in which particles continuously enter the system, grow through coalescence, and exit by sedimentation 
once they reach a critical size.
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2.2. Collocation of Basis Functions With Positivity Constraint

In our proposed method, based on the work of Zhang et al. (2000), the PSD is approximated by a weighted sum 
of nBF basis functions:

𝑛𝑛(𝑥𝑥𝑥 𝑥𝑥) ≈ �̃�𝑛(𝑥𝑥𝑥 𝑥𝑥) =

𝑛𝑛BF
∑

𝑘𝑘=1

𝑐𝑐𝑘𝑘(𝑥𝑥)𝜙𝜙 (𝑥𝑥; 𝜃𝜃𝑘𝑘) = 𝐜𝐜(𝑥𝑥) ⋅ 𝝓𝝓(𝑥𝑥). (3)

We denote the approximate solution 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥) , the collocation weights ck(t), and the basis functions ϕ(x;θk) where 
ϕ is the functional form and θk are the parameters of the kth BF (for instance, mean and variance of a Gaussian). 
In the collocation method, one such parameter is the center or mean of the basis function, μk ∈ θk, known as the 
collocation points. In the context of microphysics, these collocation points refer to particle masses, which locate 
the mode of each basis function. In Equation 3, we have also compactly rewritten the BFs and weights in vector 
form as �(�) =

(

�(�|�1) , �(�|�2) ,… , �
(

�|��BF

))

 and �(�) =
(

�1(�), �2(�),… , ��BF(�)
)

 .

Since the basis functions have a fixed shape over the droplet size range, evolving the approximate PSD reduces to 
solving for c(t) in time as a system of ordinary differential equations. Because liquid water is a conserved quantity 
in the absence of evaporation/condensation, we consider the evolution of the local mass density m(x, t) = x n(x, 
t) rather than the local number density. Thus although we use basis functions to approximate the number density, 
the equations are evolved in time based on local mass density, as in a one-moment bulk method or a standard 
flux-method bin scheme.

Denote the vector of approximate mass density at the collocation points μk to be 𝐴𝐴 �̃�𝐦(𝑡𝑡) = (𝜇𝜇1�̃�𝑛 (𝜇𝜇1, 𝑡𝑡) ,… , 𝜇𝜇𝑝𝑝�̃�𝑛 (𝜇𝜇𝑝𝑝, 𝑡𝑡)) . 
At each time step, recovering the weights from the interpolated collocation points requires solving for c(t) in the 
linear system

�̃�𝐦(𝑡𝑡) = 𝚽𝚽 ⋅ 𝐜𝐜(𝑡𝑡) (4)

where Φ is a nBF × nBF matrix, with elements Φjk = μjϕk(μj) representing the mass density of the kth basis function 
evaluated at the jth collocation point. For a linearly independent set of basis functions, this system is well-posed 
and guarantees a unique solution. However, it may be ill-conditioned, particularly when the choice of basis func-
tion has global rather than compact support (Zhang et al., 2000).

The approximate solution is initialized by projecting the initial mass distribution onto the basis space. This 
projection comes from solving a constrained optimization problem:

min
𝐜𝐜(0)

‖𝚽𝚽 ⋅ 𝐜𝐜(0) − �̃�𝐦(0)‖2 s.t. 𝐜𝐜(0) ≥ 0. (5)

The positivity constraint mathematically enforces the fact that the PSD should be nonnegative at all points. Equa-
tion 5 is formulated as a quadratic optimization, and therefore can be solved efficiently via least squares.

This projection could additionally incorporate a mass conservation constraint, both initially and at every future 
time step, but at significantly higher cost than solving the linear system in Equation 4. Additionally, since the 
exact solution to the equation does not necessarily exist as a projection of the basis functions, the mass and posi-
tivity constraints in the optimizer can lead to unphysical solutions as the approximate PSD evolves in time. While 
relaxing this constraint might lead to an artificial reduction or increase in mass throughout the simulation time, it 
allows a more efficient nonnegative least squares solution. In developing this method, we observed that evolving 
the linear system in mass density with a positivity constraint, rather than using number density directly, led to 
more physical and realistic PSDs compared to including a mass-conserving constraint at all times.

2.2.1. Interpretability and Design Choices

The method described above generalizes to solve many categories of differential equation, but selecting the basis 
functions and parameters θk requires care in order to preserve physical properties of a droplet distribution, such 
as physically realistic sizes, finite positive number and mass, and convergence with increasing complexity (for 
further discussion, refer to Appendix A). To model a droplet PSD, we choose to let the basis functions themselves 
be distributions, in contrast to the cubic splines employed by Gelbard and Seinfeld (1978) or spectral element 
methods. If we choose Gaussian or lognormal BF's collocated on a grid of droplet sizes, each BF effectively 
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represents a droplet size mode. This feature provides a useful analogy to aerosol size modes, or cloud versus rain 
droplet distributions, much as a typical bin scheme will distinguish between aerosol, cloud, and rain size bins, or 
how a moment scheme will have a separate set of moments for cloud and rain water. In fact, this representation is 
a generalization of bin schemes, which can be considered piecewise constant basis functions: ϕk(x) = 1, x ∈ {xk, 
xk + 1} (see Figure 1). When used with only a few basis functions, the BF representation can similarly be thought 
of as approximating a linear closure, as in the method of moments (MOM), where the prognostic variable is the 
first moment calculated over sub-intervals of the particle size range.

Additional design choices include selecting the collocation points and additional hyperparameters of the BFs, 
such as the variance for lognormal or Gaussian distributions. An in-depth description and justification of the BF 
setup used in following sections can be found in Appendix A. Notably, we introduce a compactly supported BF 
that approximates a lognormal distribution (CSLBF1: Equation A1), use exponentially spaced collocation points, 
and set the geometric standard deviation as the distance between adjacent collocation points.

2.3. Application to the SCE and Microphysical Processes

The equations involved in applying the BF method to the SCE are derived in Appendix B, with the result summa-
rized by Equation 6 below:

⎧

⎪

⎨

⎪

⎩

𝑑𝑑𝑡𝑡�̃�𝐦(𝑡𝑡) = 𝐜𝐜(𝑡𝑡) ⋅𝐐𝐐 ⋅ 𝐜𝐜(𝑡𝑡) +
∑𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑙𝑙=1
𝐏𝐏𝑙𝑙

𝚽𝚽 ⋅ 𝐜𝐜(𝑡𝑡) = �̃�𝐦, with 𝐜𝐜(𝑡𝑡) ≥ 0

. (6)

In this equation, third-order tensor Q and vectors Pl are obtained by taking various inner products of the 
collision kernel and additional process rates (respectively) with the basis functions. All integrals for this 
collision-coalescence term can be pre-computed for a fixed set of basis functions, defining these tensors through 
numerical integration and projection of rate processes onto the basis space. (The required precomputations and 
scaling of these computations with the number of BFs are described in Appendix B. In summary, the precompu-
tation steps scale at most cubically with the number of BFs, and the computation at each time step scales cubically 
or quadratically depending on the basis chosen.) The result is a simple set of quadratic coupled ordinary differen-
tial equations for the mass density at the collocation points, 𝐴𝐴 �̃�𝐦(𝑡𝑡) , and the BF weight vector c(t).

3. Test Cases
As a demonstration of the accuracy, efficiency, and limitations of the proposed BF method, we compare its 
spectral and bulk quantity accuracy with bin, bulk, and a reference Lagrangian microphysics scheme, using 
three different initial conditions and four sets of collisional dynamics in a zero-dimensional box. The functional 
form and parameters of each initial condition are summarized in Table 1, and the collision kernels and injection 
dynamics are summarized in Table 2.

The first two initial conditions (Table 1) consider a unimodal PSD, following either an exponential (EXP) or 
gamma (GAM) distribution in particle volume (particles assumed spherical). EXP considers a mean droplet 
radius of 15 μm, and GAM considers a smaller mean droplet radius of 8.95 μm. The third initial PSD is a bimodal 
(BIM) sum of two gamma distributions with mean droplet radii 9.85 and 4.57 μm. This initial distribution can 
be thought of as representing two cloud droplet or aerosol modes, or alternatively a cloud mode and rain droplet 
mode. A simple closure-based 2- or 3-moment bulk representation cannot capture multiple modes without an 
additional set of prognostic moments and autoconversion rates; therefore, this test case highlights the information 
gained from using a more flexible PSD representation.

The dynamics considered (Table 2) fall into two categories: (a) collision-coalescence only with three different 
collision kernels, or (b) Golovin collisions and additional dynamics of particle injection and removal from the 
box. Cases 1 C, 1G, and 1H use a constant collection efficiency Ec = 1 and three collision kernels of increasing 
complexity: (1C) a constant rate of collision, (1G) a Golovin linear kernel, and (1H) a hydrodynamic kernel 
where r(x) and a(x) represent the radius and area of a particle of mass x, respectively. The kernel parameters and 
simulated duration are selected such that the number concentration of the final droplet spectrum has decreased 
substantially, but does not approach the single-large-particle limit of coalescence-only dynamics. Test Case 
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Figure 1. Illustration of the way that the collocation of basis functions can span the range in complexity from bulk to bin 
microphysics. The particle size distribution for a two-mode gamma mixture of particles, corresponding, for instance, to a 
cloud and rain mode, is plotted as it would be represented in panel (a): (a) 3-moment bulk scheme with gamma closure (one 
set of moments for each mode); (b) 4 lognormal basis functions; (c) 16 lognormal basis functions; (d) 16 piecewise-constant 
basis functions; (e) bin method with 32 bins.
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2 begins with an initially empty box, using the same collision kernel and parameters as 1G, plus a constant 
prescribed injection rate and injection PSD to mimic entrainment/activation of new particles, and a maximum 
particle size rmax  =  25  μm (as in Khairoutdinov and Kogan  [2000]) for removal/sedimentation of particles 
approaching a drizzle size-threshold. This set of particle dynamics will drive the PSD to a steady state in which 
particles enter the system, collide, grow, and precipitate out of the system. While modeling collision-coalescence 
by itself is a useful numerical test, it requires that the microphysics scheme be able to represent arbitrarily large 
particles with an accelerating rate of growth. Using a simplified proxy for the introduction of small droplets and 
removal of large droplets allows for the study of a steady-state PSD.

For the dynamics and initial conditions described above, we investigate the particle size spectra pre- and 
post-collisions through the marginal mass distribution:

𝑑𝑑𝑑𝑑

𝑑𝑑ln(𝑟𝑟)
= 3𝑥𝑥2

𝑛𝑛(𝑥𝑥) (7)

where dm is the mass of particles in a size range of d ln(r) in a logarithmic 
space of spherical particle radius r, corresponding to particle mass x. An L2 
spectral error EL2 is calculated as a normalized sum of squared differences for 
this quantity between the approximated profiles and a reference solution from 
Lagrangian microphysics:

𝐸𝐸𝐿𝐿2 =

∫
∞

0

(

𝑑𝑑𝑑𝑑

𝑑𝑑ln(𝑟𝑟) approx
−

𝑑𝑑𝑑𝑑

𝑑𝑑ln(𝑟𝑟) ref

)2

𝑑𝑑ln(𝑟𝑟)

∫
∞

0

(

𝑑𝑑𝑑𝑑

𝑑𝑑ln(𝑟𝑟) ref

)2

𝑑𝑑ln(𝑟𝑟)

. (8)

In addition, we consider the first three moments of the PSD, which corre-
spond to total number density, total mass density, and radar reflectivity; 
these are standard quantities tracked in both climate modeling and weather 
prediction. Finally, to understand the ability of the BF method to represent 
the growth of cloud droplets into rain-range droplets, we compute the mass of 
droplets in the box exceeding a size threshold of rmax = 25 μm (Khairoutdinov 
& Kogan, 2000) as the system evolves. This exceedance can be considered 
a proxy for precipitation, even though all mass remains in the box and these 
large particles may continue to collect smaller droplets. (A threshold of 25 μm 
was shown to have the best performance in distinguishing rain and cloud 
modes in a different exploratory microphysical scheme (Igel et  al.,  2022), 
although the use of a fixed size cutoff is inherently arbitrary.) Although the 
terminal velocity of a 25 μm particle is insufficient to sediment in a realis-
tic convective updraft, we introduce this threshold as a means of evaluating 
mass growth in the tail of the particle size distribution, which corresponds to 

Label Form Parameters

EXP Exponential 𝐴𝐴 𝐴𝐴0(𝑥𝑥) =
𝑁𝑁0

𝜃𝜃
exp(−𝑥𝑥∕𝜃𝜃) N0 = 10/cm 3

θ = 14,137 μm 3

GAM Gamma 𝐴𝐴 𝐴𝐴0(𝑥𝑥) =
𝑁𝑁0

Γ(𝑘𝑘)𝜃𝜃𝑘𝑘
𝑥𝑥𝑘𝑘−1exp(−𝑥𝑥∕𝜃𝜃) N0 = 100/cm 3, k = 3

θ = 1,000 μm 3

BIM Bimodal Gamma Mixture 𝐴𝐴 𝐴𝐴0(𝑥𝑥) =
𝑁𝑁0,𝑎𝑎

Γ(𝑘𝑘𝑎𝑎)𝜃𝜃
𝑘𝑘𝑎𝑎
𝑎𝑎

𝑥𝑥𝑘𝑘𝑎𝑎−1exp (−𝑥𝑥∕𝜃𝜃𝑎𝑎) 

𝐴𝐴 +
𝑁𝑁0,𝑏𝑏

Γ(𝑘𝑘𝑏𝑏)𝜃𝜃
𝑘𝑘𝑏𝑏

𝑏𝑏

𝑥𝑥𝑘𝑘𝑏𝑏−1exp (−𝑥𝑥∕𝜃𝜃𝑏𝑏)

N0,a = 10/cm 3, N0,b = 100/cm 3

ka = 4, kb = 2

θa = 1,000 μm 3, θb = 200 μm 3

Table 1 
Summary of the Three Initial Conditions Tested for Collision-Only Dynamics

Label Equation Duration

1C Constant kernel collisions EXP: 4 hr

K(x, y) = A GAM: 4 hr

A = 10 −4/cm 3/s BIM: 4 hr

1G Golovin kernel collisions EXP: 2 hr

K(x, y) = B(x + y) GAM: 1 hr

B = 1,500/s BIM: 4 hr

1H Hydrodynamic kernel collisions EXP: 4 hr

�(�, �) = ��(�(�) + �(�)) |�(�) − �(�)| GAM: 4 hr

C = 10 −12 cm 3/μm 4/s BIM: 4 hr

2 Golovin kernel collisions, injection, and removal 2 hr

K(x, y) = B(x + y), B = 1,500/s

𝐴𝐴 𝐴𝐴(𝑥𝑥) =
𝑥𝑥𝑘𝑘−1exp(−𝑥𝑥∕𝜃𝜃)

Γ(𝑘𝑘)𝜃𝜃𝑘𝑘
 , k = 2, θ = 200 μm 3

𝐴𝐴 �̇�𝑃 = 1∕s , rmax = 25 µm

Note. For the hydrodynamic case 1H, r(x) and a(x) refer to the radius and 
area, respectively, of a particle with volume x. Case 2 is initialized as an 
empty box.

Table 2 
Equations and Parameters for the Four Collision Dynamics Considered, 
and the Corresponding Initial Condition/Simulation Duration Pairs Tested 
for Each Dynamic
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autoconversion in bulk microphysics schemes and relates to the mass of droplets that experience the highest rates 
of collision-coalescence.

For comparison with the BF method, we solve each test case numerically using the flux method for spectral bin 
microphysics with 32 single-moment bins (Bott, 1998), a two- or three-moment closure method of moments 
(Bieli et  al.,  2022), and a Lagrangian particle-based code called PySDM (v2.5) (Bartman et  al.,  2022). The 
bin method used follows the original setup from Bott  (1998), spanning a range of 0.633–817 μm radius with 
mass doubling between bins, and a time step selected to be sufficiently small as to prevent numerical instabil-
ity (1–100 s depending on the dynamics). The choice of 32 bins is common in LES application and contrasts 
the performance of the BF method with a spectral representation that is too expensive for existing GCMs. The 
MOM representation uses 2 moments with an exponential closure for the EXP initial condition test cases, and a 
3 moment gamma closure for the GAM and BIM initial conditions. The MOM is initialized to match the initial 
moments of each distribution exactly, and therefore is an exact match of the initial PSD for the EXP and GAM 
cases. As a high-fidelity reference for the collision-only dynamics, we use the results of Lagrangian microphys-
ics. The collision kernels used in this Lagrangian case have exactly the same functional forms as those used for 
the collocation, bin, and bulk methods with a constant collection efficiency Ec = 1.

These Lagrangian PySDM simulations use 2 15 = 32,768 superdroplets to represent the particle population in a 
box of volume 1 m 3, and are taken as the reference profile for the purposes of discussion and L2 spectral error. 
While operational SDM simulations typically use closer to 256 superdroplets per gridbox to study broader micro-
physical processes, the choice of a sufficiently large quantity of superdroplets was shown to reproduce analytic 
and numerical solutions for similar collision dynamics in a 0D box setting very well (Shima et al., 2009). Further-
more, it is expected that the solution error for the other methods considered in these experiments will significantly 
outpace that of the Lagrangian results given the large number of superdroplets used to represent the PSD. Thus 
although the superdroplet method may incur significant errors due to an under-resolution of the size spectrum 
when fewer superdroplets are used, the PySDM results presented in this work are a reasonable benchmark against 
which to validate other methods.

The BF method is demonstrated in both a low-complexity and moderate-complexity configuration, with 8 or 16 
CSLBF1 basis functions, respectively. Both configurations span a particle size range of 2–200 μm radius, which 
corresponds to 26 of the 32 bins used in the flux method. Collocation points are logarithmically spaced over 
particle volumes corresponding to this size range (particles are assumed spherical with liquid water density). BF 
shape parameters θk are chosen such that the basis functions overlap with their nearest neighbors: θk = μk − μk−2 
and θ1 = θ2 = μ2. The method is implemented in the Julia programming language and uses a variable time-step 
with the DifferentialEquations.jl package (Rackauckas & Nie, 2017). The constrained optimization in Equation 4 
is solved using NonNegLeastSquares.jl v0.4.0 (non-negative least squares). Numerical integrals are computed 
using Cubature.jl v1.5.1.

4. Results
4.1. Unimodal Collision-Coalescence

For the collision-coalescence box cases with a single particle size mode (EXP and GAM), we find that the collo-
cation method with 16 basis functions is able both to reproduce the initial PSD well and to accurately predict the 
PSD following collisions. The spectra for case 1G-GAM in Figure 2 reveal that more than eight basis functions 
are necessary for this particular BF configuration to approximate the initial condition's primary size mode, while 
16 BFs are sufficient to capture the height and location of this mode. The 16-BF configuration outperforms the 
MOM in predicting the final spectrum, as the primary mode in the MOM is slightly too large and the spectrum 
too narrow compared with Lagrangian, bin, and BF approach. The 8-BF configuration artificially broadens both 
the initial and final PSD due to the wide basis functions required to span the particle size range of interest. This 
result supports the claim that the BF approach is suitable as a moderate complexity representation of microphys-
ics, whereas a bulk method with closure is appropriate when it is desired to use only a few degrees of freedom.

The results of all three initial conditions and collision kernels are summarized by the L2 spectral errors of the 
post-collision spectra in Figure 3. The collocation method with 8 BFs performs on par with the MOM in many 
cases, suffering from broadening of the spectrum particularly in the BIM case, which requires high resolution in 
the particle size space to capture both narrow modes. With 16 BFs, the BF method outperforms a bulk method in 
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predicting the post-collision spectra in most cases, and it performs similarly to a bin method (with superior accu-
racy in half of the cases) despite requiring fewer degrees of freedom than the bin approach to span the same parti-
cle size range. Errors in the bin representation range from 15% to 30% relative to the Lagrangian results and may 
be attributed in part to the stepwise PSD representation. Likewise, the BF approach with 16 degrees of freedom 
results in errors consistently less than 25% for all three collision kernels investigated with unimodal initial condi-
tions, with some of this error attributable to an under-resolution of the smooth distribution. In contrast, spectral 
errors in the MOM vary significantly from case-to-case according to the complexity of the collision kernel and 
initial condition. These results demonstrate the potential for the collocation method to consistently resolve real-
istic droplet spectra at a level of complexity between that of a bulk method and a 32-single-moment bin scheme.

Next we investigate bulk quantities predicted by each method in Figures 4 and 5, which illustrate the time evolu-
tion of the first three moments and exceedance mass, respectively, for the 1G-GAM case, which displays repre-
sentative behavior among all unimodal test cases. The bulk method of moments outperforms the BF method 
in predicting the time evolution of the PSD moments, as the first two moments are predicted analytically, and 
the gamma closure approximation is only employed in computing the second moment. (Although these results 
indicate that the bulk MOM performs well on all bulk quantities relative even to a bin representation, we note 
that bulk methods do not typically represent precipitation through exceedance as is done here, but rely on auto-
conversion parameterizations which introduce significant uncertainty into the model.) The BF method does not 
exactly conserve mass, especially when fewer BFs are used, in part because the use of compactly supported 
basis functions prevents the representation of particles larger than the support of the basis functions. The distri-
butional representation of a particle population allows for the formation of unphysically large particles in the 
collision-coalescence equation; therefore, even though the spectral error is relatively low, the inability of the BF to 
capture such large particles strongly penalizes the higher-order moments, especially relative to a bulk representa-
tion with a globally supported closure assumption. Furthermore, the matrix inversion in Equation 4 does not 
guarantee conservation of mass, particularly where the system of equations might be large and ill-conditioned. 
Despite this challenge and lack of a guarantee, the BF method does a reasonable job recovering mass conser-
vation throughout the simulation time, with mass variations (relative to the exact initial mass and reference 
Lagrangian solution, which is mass-conserving) of up to 17% in the 8-BF case due to an early overprediction of 
mass, and up to a loss of 9% of total mass in the 16-BF case, with the maximum error incurred near the end of the 
simulation. Among all unimodal test cases summarized in Figure 3, mass error for the 16-BF case is most severe 
for case 1H-GAM (not shown) with an initial overprediction of 17%.

The second moment is overestimated by the 8-BF method initially due to error in projecting the initial PSD onto 
the basis space: the initial projection slightly overpredicts the size of some droplets, but not so much as to miscat-
egorize them in the exceedance regime in either BF case, as indicated in Figures 2 and 5. The results further indi-
cate that the 8-BF representation is not sufficient to accurately represent the short-time dynamics of the moment 
evolution, as evidenced by jumps in the first and second moments as well as the exceedance mass. As noted in the 

Figure 2. Initial spectrum GAM (left) and post-collision spectrum (right) resulting from a Golovin kernel 
collision-coalescence (1G) for bulk (MOM), bin (flux), and Lagrangian methods, and using the basis function collocation 
method with 8 or 16 degrees of freedom.
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Figure 3. Spectral error (L2) for the bulk, bin (flux), and basis function methods with 8 or 16 basis functions, computed 
relative to a Lagrangian PySDM result. Errors are computed for each of three coalescence-only experiments (case 1C, 1G, 
and 1H, respectively; bar colors), and each of three initial conditions (EXP, GAM, BIM; top to bottom).
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spectral case, the necessity for the basis functions to span the entire size range leads to an artificial broadening 
of the spectrum in this case, as well as to unphysical jumps in bulk quantities in time as soon as a basis function 
corresponding to a larger size mode is first activated. This challenge is alleviated by using more BFs (still lower 
complexity than the bin representation), and, in fact, the 16-BF representation outperforms the bin method in 
predicting exceedance mass (Figure 5): the tail of the bin representation is underresolved with only 32 bins, 
leading to an underprediction of the mass of large precipitation-range droplets. Indeed, despite shortcomings in 
predicting PSD moments, the BF method improves prediction of the second moment over the bin method in 6 
out of 9 test cases (not shown), indicating that the method still performs well at capturing the mass of particles 
which lie in the tail of the distribution. This indicates a powerful capability for this flexible spectral method to 
accurately capture the rate of transition from small cloud droplets to a coalescence-driven “rain” mode without 
prior assumptions of a size threshold or autoconversion rate, while also continuing to resolve the size spectrum 
of the rain-mode droplets.

4.2. Multimodal Collision-Coalescence

One strength of the BF method is its ability to represent up to nBF modes of a PSD, where nBF is the number of basis 
functions used. By contrast, bulk methods can represent at most one droplet mode, and bin methods lose spectral 
detail of the modes due to the piecewise constant representation of the PSD. We demonstrate in Figure 6 the test 
case 1G-BIM: Golovin collision-coalescence with an initially bimodal distribution. The Lagrangian, bin, and 

16-BF results indicate that the smaller PSD mode mostly disappears after 4 hr, 
leaving behind only a small shoulder in the PSD and broadening and shifting 
the mode toward larger particles. With 16 degrees of freedom, the BF method 
accurately captures both of these modes during the PSD evolution, while 
a large initial condition error in the 8-BF case propagates to an artificially 
large final PSD. By comparison, the gamma-closure MOM cannot repre-
sent the initial or final PSD exactly due to the underlying unimodal closure 
assumption, but it only slightly overpredicts the size of the dominant mode 
in the post-collision spectra. The bin method accurately predicts droplets in 
both size ranges, although the underlying piecewise-constant representation 
under-resolves the complexity of the multimodal distribution initially.

4.3. Collision-Coalescence With Injection and Removal

When including removal of large particles and introduction of small particles 
(Case 2), we investigate the steady-state PSD and the time evolution of the 
PSD moments to a steady state. No Lagrangian or MOM results are presented 
in this case, as the removal and injection process rates used are not applica-
ble in those frameworks. As a high resolution reference, we instead present 

Figure 4. Evolution of the first three moments (left to right) of the GAM initial condition over time for bulk, bin, and basis 
function method with 8 or 16 degrees of freedom using Golovin collision dynamics (1G).

Figure 5. Mass density of droplets exceeding 25 μm in radius for Lagrangian, 
bulk, bin, and collocation methods as a function of time for Golovin collision 
dynamics (1G) and initial condition GAM.
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results from a 64-bin representation and a 64-BF representation over the same size range, and a steady-state 
numerical solution. This numerical steady state is computed with a 64-BF representation by setting 𝐴𝐴 𝐴𝐴𝑡𝑡�̃�𝐦(𝑡𝑡) = 0 in 
Equation 3 and iterating using Newton's method with an initial guess of Pinj, the projection of the injection PSD 
I(x) (Table 1) on the basis space.

In Figure 7, we see that the steady state and 64-BF results indicate that the injected PSD should broaden and form 
a secondary mode at around 10 μm in size. Particles enter the system, grow through collisions, and exit once they 
reach 25 μm in size. However, this depletion of large particles is reflected by a substantial decrease in slightly 
smaller particles, down to 10 μm radius. This can be explained by the fact that particles larger than 10 μm are 
(a) far more likely to collide with each other, given the Golovin kernel; and (b) likely to form a particle larger 
than 25 μm upon coalescence and thus leave the system. The bin method reflects this trend while overpredicting 
the mass of droplets in this 10–12 μm size range, yet it still captures the first three moments of the distribution 
(Figure 8) relatively well, with only marginal improvement from doubling the number of bins. In contrast, the BF 
method does a poor job in this instance, particularly when only 8-BF are used: because the 8-BF approach artifi-
cially broadens the injected spectrum, as seen in previous spectral results, it similarly artificially accelerates the 
collisions toward larger droplets. The truncation of the integrals at the exceedance size of 25 μm is not sufficient 
to capture the depletion of slightly smaller particles in either BF case, as the distribution peaks near 25 μm in both 
BF cases. This large-particle peak is reflected in the overprediction of the steady-state mass (with errors in total 
mass up to 30%) and second moment in Figure 8, though the transient growth period up to around 2,000 s is well 
represented when 16 BFs are used.

Figure 6. Spectra following collision-coalescence of a bimodal droplet population BIM using Lagrangian, bulk, bin, and 
basis function methods with a Golovin kernel (case 1G).

Figure 7. Steady state particle size distribution (PSD) for the third case with collisions, sedimentation, and injection, using 
a bin method with 32 or 64 bins, the basis function method with 8, 16, or 64 basis functions, and a steady state solution 
computed using basis functions and Newton's method. The PSD of injected particles is plotted as a dashed black line with 
units on the right y axis.
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This set of particle dynamics, particularly removal of large particles using a size threshold, demonstrates that the 
BF method is ill-suited to represent dynamics with fixed size-cutoffs at long time scales, relative to a traditional 
bin scheme. However, the coalescence-only experiments presented earlier indicate that the BF method performs 
well in predicting the tail of the PSD when these large droplets are not removed from the system, indicating that it 
is capable of representing cloud and rain droplets as a continuous spectrum, rather than using separate prognostic 
variables as is typically done in bulk methods.

4.4. Computational Complexity

The BF method offers similar computational scaling to a bin spectral method, but is higher complexity than 
a traditional multi-moment bulk method. Bulk methods with a closure assumption scale with the number of 
moments, (�mom) when the relationship between the prognostic moments and PSD parameters is known, but 
more complex PSD closures may require nonlinear operations, tabulations, or nonlinear optimization, leading to 
computationally intensive operations at each time step. Spectral bin methods such as the flux method used here 
(Bott, 1998) scale quadratically with the number of bins, 

(

�2
bin

)

 , as each pair of bins is considered sequentially 
for the coalescence dynamic. The basis function method scales either cubically or quadratically depending on the 
choice of basis (see Appendix B). While the initial precomputation for the BF method is cubic in the number of 
basis functions, a compactly supported basis will lead to quadratic operations in the forward time-marching of 
Equation 6, as the third-order tensor Q is sparse. This places the BF method at the same order of complexity as 
other spectral methods, 

(

�2
BF

)

∼ 
(

�2
bin

)

 , but with performance that can meet or exceed bin scheme accuracy 
with half or fewer of the required degrees of freedom. Thus the collocation method could recover bin-like accu-
racy with only 1/4 of the computational cost.

5. Discussion and Conclusions
This paper describes and demonstrates a novel method to represent the particle size distribution of droplets for 
warm-rain atmospheric microphysics. Collocation of basis functions provides a more flexible PSD approxima-
tion than either bin microphysics or the method of moments with closure (bulk microphysics). In particular, 
selecting BFs which are themselves distributions generalizes traditional spectral bin methods to a smoothed 
representation that can be interpreted as the sum of droplet size modes, and the collocation approach applies to 
any choice of basis function form, unlike the bin approach, where the numerical methods are specific to a piece-
wise constant representation. The method is also appropriate for applications where more than three degrees of 
freedom (the most usually provided in a bulk scheme) are desired, but where full bin complexity is infeasible. 
In this low-complexity limit, collocation of basis functions can be considered a linear closure relating the mass 
density at the collocation points to a BF weight vector.

Tested in a variety of box model settings, we find that the BF method improves spectral accuracy under 
collision-coalescence dynamics compared to a three-moment bulk method, while using fewer degrees of free-
dom than a bin method. The spectral detail from the BF approach allows for a precise calculation of mass in 
the tail of the distribution (exceedance), which could avert the need for precipitation parameterizations that are 

Figure 8. Time-series evolution of first three moments of the distribution for the collocation and bin methods with collisions, precipitation, and injection (Case 2), as 
well as high-fidelity and steady state reference values.
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required by bulk methods. Another strength of the method is its ability to represent multimodal distributions, 
unlike 3-moment bulk methods. Under dynamics including injection and removal which drive the PSD toward a 
steady state, the BF method does well in predicting the size distribution and moments in the transient regime, but 
overpredicts the quantity of large particles in the steady state size distribution. This finding indicates that the BF 
method is better suited to continuous dynamics (rather than size thresholding), and therefore might perform well 
in a context with no artificial separations between cloud and rain droplets.

In general, the BF method is a more flexible framework than bulk or bin methods: the suggested implementation 
can receive an arbitrary set of microphysical processes and automatedly perform all required numerical integra-
tions. This is in contrast to bin methods, which require tabulated collision and breakup kernels that are dependent 
on the bin discretization, and in contrast to bulk methods, which frequently include hard-coded parameteriza-
tions and closures. The ability to specify arbitrary functional process rates for the BF method will be especially 
useful for reducing microphysics parameter uncertainty in atmosphere models. While this study focuses on the 
collisional-coalescence dynamic, other warm rain dynamics such as condensation-evaporation could be formu-
lated as processes driving the collocation weights in time, as in Equation 6, though testing additional warm rain 
dynamics is beyond the scope of this work. We note that condensation-evaporation is a source of artificial spectral 
broadening in typical bin methods (Khain et al., 2015) unless movable bins are implemented. Due to the high cost 
of recomputing numerical integrals for coalescence and other dynamics when collocation points are updated, we 
would recommend fixing collocation points in particle size space throughout time. The simplest approach would 
simply substitute the collocation representation and points into the diffusional growth equation, performing auto-
matic differentiation of the basis functions, and adding a new variable for supersaturation to the coupled set of 
ODEs as in Equation 6 plus resulting source terms to the right hand side of the equation. As this approach requires 
no remapping over the particle mass space, it might avert some issues related to numerical diffusion experienced 
in bin schemes (while potentially incurring other penalties, such as mass conservation).

The BF method does have limitations. First, although the linear system in Equation 4 is solved in mass density 
space with a positivity constraint, the method does not exactly conserve mass for collision-coalescence-only 
dynamics. When employed with compactly supported basis functions, the method can only represent particles 
up to a maximum size, unlike bulk or Lagrangian methods. This shortcoming manifests in errors in the higher 
order moments of the PSD, including some mass loss from the system (Figure 4). Some potential solutions could 
involve allowing for globally supported basis functions at the tail of the distribution, or periodically rescaling 
the weight vector to exactly conserve mass in the system. Alternatively, a mass conserving constraint could be 
imposed at each time step in addition to the positivity constraint, although doing so could result in numerical 
instability. As this mass non-conservation typically only appears at the long-time limit of the simulation when 
the total number concentration of particles is substantially depleted, we anticipate that it would not contribute a 
dominant source of error on short (sub-hourly) time scales when a full set of microphysical dynamics and flow 
field computations are included. Instead, a simple rescaling of the basis function weights before advecting micro-
physical quantities across grid boxes or computing saturation adjustments would be sufficient to close the mass 
balance without strongly impacting the spectral results. (For instance, this technique would require less than a 
10% rescaling in the 16-BF case presented in Figure 4.) As indicated by the coalescence-injection-removal case in 
Figure 8, rescaling is likely unnecessary for mass conservation on short time scales, but would be straightforward 
on longer time scales where a steady state in the PSD is approached.

Indeed, when particle removal and injection are considered, the method is able to accurately predict moments 
in the transient regime, and in fact over-predicts the quantity of large particles. Therefore, additional testing 
with a complete set of microphysical processes and a comprehensive range of initial conditions will be required 
to determine whether further refinement is necessary. Future work to improve and test this novel microphysics 
method will involve incorporating additional microphysical processes such as diffusional growth, as well as 
employing one, two, and three-dimensional simulations to test the ability of the method to reproduce mesoscale 
cloud properties and to assess the severity of mass nonconservation without imposing additional constraints. 
Further testing of the method in a one-dimensional setting with spatial advection as well as diffusional growth 
will also be necessary to assess how susceptible the collocation implementation is to numerical diffusion, as is 
often observed with bin schemes.

The BF method presented here and tested for coalescence dynamics improves spectral accuracy over bulk meth-
ods with fewer degrees of freedom than a bin method, and it has the potential to reduce the computational cost 
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of microphysics even further. Using inspiration from proposed moving bin schemes, the locations or shapes of 
BFs could be automatically selected and periodically updated to maximize the information potential provided by 
only nBF degrees of freedom. While this approach could impose the cost of recomputing numerical integrals, if 
done sparingly and intelligently it would cluster basis functions near the most-weighted droplet modes, improving 
the accuracy-complexity tradeoff. Another potential benefit of the collocation representation is the ability to use 
multidimensional basis functions: one independent variable could be the droplet size, as in this work, while other 
particle properties such as aerosol hygroscopicity, ice riming fraction, or surface tension could occupy additional 
inputs. This multidimensional representation has been explored for aerosol bin schemes (Lebo & Seinfeld, 2011), 
as well as for ice bulk methods (Morrison & Milbrandt, 2015). However, it may be more computationally effi-
cient to represent multiple particle properties in the BF framework due to the flexibility of selecting radial basis 
functions with compact support to generate a sparse system and lessen the computational burden. Such a repre-
senta tion could eliminate the uncertainties of conversion parameterizations and of information loss from aggre-
gating particles into categories with distinct sets of microphysical dynamics. This potential lights a path toward 
unifying the numerical representation of all microphysical particles in a single, consistent framework.

Appendix A: Basis Functions, Collocation Points, and Hyperparameters
The BF collocation parameters demonstrated in this study are briefly explained. As the collocation points 
correspond to the droplet mode represented by each BF, we should not assume a priori any particular initial or 
final distribution of particles. However, we can use the inherent length scales of the physical system to aid the 
setup. For cloud droplets and aerosols, the size domain should extend from xmin ≥ 0 μm to the size of the largest 
particles xmax that do not sediment out of the system or instantaneously break up, hence making a finite domain 
approximation reasonable. Furthermore, we draw inspiration from bin microphysics to suggest logarithmically 
spaced collocation points over the domain.

The basis function family and their hyperparameters should then be selected to ensure a few criteria:

1.  The entire domain [0, xmax] is spanned with some minimum probability.
2.  There should be no particles with negative or infinite mass; that is, ϕk(x < 0), ϕk(x → ∞) = 0 for all basis 

functions.
3.  BF hyperparameters should be selected to minimize oscillations and jumps in the approximated distribution.

The first condition is equivalent to requiring either globally supported BFs, such that ϕ(x) > 0 ∀x, or sufficient 
overlap of compactly supported BFs, which are positive over some interval and zero elsewhere. The second 
condition cannot be met exactly for any BFs that are globally supported over (−∞, ∞), therefore we suggest using 
either compactly supported BFs (CSBFs) or exponentially decaying BFs. CSBFs are additionally recommended 
due to their favorable numerical properties: Zhang et al. (2000) demonstrate that CSBFs result in a better condi-
tioned system of equations (as in Equation 5). The third criterion is the trickiest and will depend on the family 
of BFs chosen. As a simple heuristic for a two-parameter family such as Gaussians, we suggest setting the scale 
factors as some multiple of the spacing between collocation points to ensure support and smoothness over the 
domain. More sophisticated methods of setting the hyperparameters, such as optimization over a set of potential 
distributions or constraints on fluctuations in the second derivatives, are possible but beyond the scope of this 
paper.

Several families of basis functions are suitable to approximate a droplet size distribution, such as Gaussian, 
gamma, and lognormal distributions. In order to obtain a compactly supported basis, however, we propose to use 
a version of the CSRBF1, a compactly supported Gaussian approximation proposed by Wu (1995), modified to 
instead uses a logarithmic argument. This basis function, which we will refer to as CSLBF1 (compactly supported 
lognormal BF 1) takes the form:

𝜙𝜙(𝑟𝑟) =

⎧

⎪

⎨

⎪

⎩

12

35
(1 − 𝑟𝑟)

4
(

4 + 16𝑟𝑟 + 12𝑟𝑟2 + 3𝑟𝑟3
) 𝑑𝑑𝑟𝑟

𝑑𝑑𝑑𝑑
𝑟𝑟 ≤ 1

0 𝑟𝑟 𝑟 1

 (A1)

with argument
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𝑟𝑟 =
|log(𝑥𝑥) − 𝜇𝜇|

𝜃𝜃
 

where μ is the collocation point and θ is a scale factor. Given that CSRBF1 approximates a normal distribution, 
CSLBF1 approximates a lognormal distribution, which is better suited to particle distributions as it is right 
skewed.

Appendix B: Collocation of BFs for the SCE
Evaluating Equation 1 with arbitrary additional processes Pl in mass density at collocation point μj, we find:

����� (��, �) = 1∕2�� ∫

��

0
� (�� − �, �) �(�, �)�(�� − �, �)�(�� − �, �)��

−���(��, �)∫

�max−��

0
�(�, �)�(��, �)�(��, �)�� +

�����
∑

�=1

��(��, �(��, �))
 (B1)

Substituting the collocation approximate solution for local mass density, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴(𝐴𝐴𝑥 𝑥𝑥) =
∑𝑝𝑝

𝑘𝑘=1
𝐴𝐴𝑥𝑥𝑘𝑘(𝐴𝐴)𝑐𝑐𝑘𝑘(𝑥𝑥) , this time 

derivative becomes:

���̃�(�) = 1∕2
∑�BF

�=1
∑�BF

�=1 ����(�)��(�)∫

��

0
��(�� − �)��(�, �)�(�� − �, �)��(�� − �, �)��

−
∑�BF

�=1
∑�BF

�=1 ����(�)��(�)��(��)∫

�max−��

0
��(�)�(��, �)��(��, �)�� +

∑����

�=1
��
�(��, �̃(��, �))

 (B2)

The collision-coalescence dynamics are summarized via a third-order tensor in mass density: Q, with

���� =1∕2�� ∫

��

0
��(�� − �)��(�, �)�(�� − �, �)�� (�� − �, �)�� − ����(��)

∫

�max−��

0
��(�)�(��, �)��(��, �)��

 (B3)

The overall dynamics are then summarized by cubic collision-coalescence dynamics plus the additional processes 
projected onto the basis space as in Equation 5 to obtain the terms 𝐴𝐴 𝐏𝐏𝑙𝑙 = (𝜇𝜇1𝑃𝑃𝑙𝑙 (𝜇𝜇1) , 𝜇𝜇2𝑃𝑃𝑙𝑙 (𝜇𝜇2) ,… , 𝜇𝜇𝑘𝑘𝑃𝑃𝑙𝑙 (𝜇𝜇𝑘𝑘)) in 
Equation 6.

Many of the quantities in Equation 6 can be precomputed and stored for a given set of basis functions. These 
precomputations include:

•  The linear system, Φ;
•  The third order tensor Q which can be computed numerically via quadrature or Monte Carlo integration, given 

a functional form of the kernel.
•  Appropriate projection of additional processes onto the basis space to obtain Pl. For the purpose of ensuring 

mass conservation, this may require computing the first moments of the basis functions over the integration 
window [0, xmax].

•  The initial condition at the collocation points 𝐴𝐴 �̃�𝐦(0) .

The computation of Q scales cubically with the number of collocation points for globally supported basis func-
tions, and quadratically for partially overlapping compactly supported basis functions. The dynamical system 
in Equation 6 involves at most cubic vector-tensor multiplication and function evaluations for the tensor-vector 
inner products, and therefore a small system of basis functions is more likely to be limited by the time-stepping 
scheme or matrix inversion than by the precomputation. Another advantage of choosing compactly supported 
basis functions is that the constant collocation matrix Φ can be N-diagonal (CSBF's that only overlap their near-
est neighbors will result in a tridiagonal system, e.g.,) thus making the inversion much more computationally 
efficient. Finally, using CSBFs limits the range of particle sizes to a finite domain, making numerical integration 
more straightforward.
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Acronyms
BF Basis function (method)
CSBF Compactly supported basis function
CSLBF1 Compactly support lognormal basis function 1
GCM General circulation model
MOM Method of moments
PSD Particle size distribution
SCE Stochastic collection equation

Notation
x Particle mass or volume
n(x, t) Particle size distribution: number of particles of mass x in a volume of air at time t
K(x, y) Collision kernel: rate of collisions between particles of mass x and y
Ec(x, y) Coalescence efficiency for particles of mass x and y
xmax Particle size threshold; particles above this mass are removed from the system
Pinj(x, t) Injection rate of particles of size x at time t, given in number of particles per air volume per time

𝐴𝐴 �̇�𝑃   Injection rate, in number of particles per air volume per time
I(x) Normalized size distribution of injected particles

𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥)  Approximate PSD using a basis function representation
c(t) Vector of basis function weights at time t
ϕ(x) Vector of basis functions
θk Hyperparameters of the kth basis function
μk Collocation point of the kth basis function

𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡)  Mass density of the kth weighted basis function
Φ Basis function mass density tensor: Φjk = μjϕk(μj)
Q Third order collision kernel tensor in basis function space
Pl Vector of process rate l projected onto basis function space

Data Availability Statement
The implementation of basis function collocation and examples used in this work can be found in the 
package RBFCloud.jl at https://doi.org/10.5281/zenodo.6984349, or on github at https://github.com/
edejong-caltech/RBFCloud.jl. The 3-moment bulk scheme uses the package Cloudy.jl, available at 
https://github.com/CliMA/Cloudy.jl, and the Lagrangian microphysics package PySDM is available at https://
github.com/atmos-cloud-sim-uj/PySDM.
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